Pages

Pages

Sunday, June 23, 2024

Create Local RAG Pipelines with R2R and Ollama for Free

 This video installs R2R (Rag to Riches) with Ollama and local models which is the ultimate open-source framework for building and deploying high-quality Retrieval-Augmented Generation (RAG) systems.



Code:

conda create -n r2r python=3.11 -y && conda activate r2r
pip install -U 'r2r[all]'
pip install -U 'r2r[local-embedding]'

sudo apt install -y postgresql-common
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
sudo apt install postgresql-15-pgvector
cd /tmp
sudo -u postgres psql
###create role, database and extension in video
\q to exit
sudo systemctl enable postgresql
sudo service postgresql start
sudo -u postgres psql


export POSTGRES_USER=your_user
export POSTGRES_PASSWORD=your_password
export POSTGRES_HOST=your_host
export POSTGRES_PORT=your_port
export POSTGRES_DBNAME=your_db


mkdir r2r
cd r2r
touch local_ollama

-- and then pasted below config in local_ollama file:

{
  "embedding": {
    "provider": "sentence-transformers",
    "base_model": "all-MiniLM-L6-v2",
    "base_dimension": 384,
    "batch_size": 32
  },
  "eval": {
    "provider": "local",
    "frequency": 0.0,
    "llm":{
      "provider": "litellm"
    }
  },
  "ingestion":{
    "excluded_parsers": {
      "gif": "default",
      "jpeg": "default",
      "jpg": "default",
      "png": "default",
      "svg": "default",
      "mp3": "default",
      "mp4": "default"
    }
  }
}

python3 -m r2r.examples.quickstart ingest_as_files --no-media=true --config_name=local_ollama

No comments:

Post a Comment