This video introduces and shows how to use GPT-4o mini by OpenAI which is quite cost efficient and performant.
Code:
from openai import OpenAI
import base64
import requests
import os
## Set the API key and model name
MODEL="gpt-4o-mini"
os.environ.get('OPENAI_API_KEY')
client = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'))
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
IMAGE_PATH="nm.png"
base64_image = encode_image(IMAGE_PATH)
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with this image!"},
{"role": "user", "content": [
{"type": "text", "text": "Describe the image? how many girls are there?"},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"}
}
]}
],
temperature=0.0,
)
print(response.choices[0].message.content)
-
#pip install -U openai
#export OPENAI_API_KEY=""
from openai import OpenAI
import os
## Set the API key and model name
MODEL="gpt-4o-mini"
os.environ.get('OPENAI_API_KEY')
client = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'))
completion = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant. Help me with my question!"},
{"role": "user", "content": "A bat and a ball together cost $1.10. The bat costs $1.00 more than the ball. How much does the ball cost?"}
]
)
print("Assistant: " + completion.choices[0].message.content)
No comments:
Post a Comment